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Abstract—In contrast to Web2, characterized by its heavy
reliance on centralized entities for data storage and process-
ing, Web3 significantly reduces dependence on intermediaries,
thereby mitigating risks associated with centralized data repos-
itories. Through the integration of cryptographic principles
and blockchain technology, Web3 prioritizes data sovereignty
and enhances privacy. This decentralized framework fosters
an environment where billions of individuals and machines
can interact and collaborate without the oversight of central
authorities, heralding a new era of democratic participation in
society.

Meanwhile, Artificial Intelligence (AI) stands as a pivotal
force shaping the future landscape of technology and society.
Its importance lies not only in its ability to automate tasks
and optimize processes but also in its capacity to revolutionize
industries, drive innovation, and solve complex problems at
scales previously unimaginable. From personalized medicine and
autonomous vehicles to smart cities and predictive analytics,
Al holds the potential to enhance efficiency, improve decision-
making, and empower individuals and organizations to tackle
global challenges.

In the Web3 environment, Al systems, like humans and other
machines, should operate within a decentralized framework. The
promising integration of Al capabilities within the decentralized
framework of Web3 heralds the future, as this combination
has the potential to unlock unprecedented levels of innovation,
efficiency, and democratization. By leveraging this synergy, we
can shape a more equitable and sustainable digital ecosystem
for generations to come. However, while AI and Web3 each
present their distinct challenges, their convergence brings about
complex issues. Ensuring the responsible and ethical deployment
of Al preserving the integrity of inference, and safeguarding the
intellectual properties of AI within the decentralized ecosystem
of Web3 require addressing multifaceted concerns such as
fairness and guarantees in payment, user privacy, and more.

This paper introduces Sertn, a decentralized network facili-
tating the deployment of Al systems on a Web3 infrastructure.
In Sertn, we utilize cryptographic technologies such as zero-
knowledge proofs (ZKP), fully homomorphic encryption (FHE),
and multi-party computation (MPC) to safeguard the integrity
and privacy of users and/or AI developers. Furthermore, a
blockchain-based architecture ensures payment assurances and
democratic governance within the system. While some challenges
have been addressed, our team remains committed to continu-
ously updating Sertn with new technologies to tackle emerging
challenges in Decentralized Al

I. INTRODUCTION

A. Background in AI and Web3

This subsection provides a brief overview of Al and Web3.
1) Artificial Intelligence (Al): Artificial Intelligence (AI)
stands at the forefront of modern technological advancements,
revolutionizing industries and reshaping the way we interact

with technology. With its ability to mimic human cognitive
functions, Al enables machines to learn from data, adapt to
new inputs, and perform tasks that traditionally required hu-
man intelligence. From personalized recommendation systems
to autonomous vehicles, Al applications permeate various
aspects of our daily lives, offering solutions to complex
problems and unlocking new possibilities for innovation.

Machine Learning (ML), a subset of Al, focuses on the
development of algorithms that allow computers to learn from
and make predictions or decisions based on data. Through the
iterative process of training on large datasets, ML algorithms
can recognize patterns, extract insights, and improve their
performance over time without being explicitly programmed.
This capability is driving advancements in fields such as
healthcare, finance, and cybersecurity, where ML techniques
are being utilized to enhance diagnostic accuracy, optimize
financial trading strategies, and detect anomalies in network
traffic, among other applications. ML’s versatility and effec-
tiveness in handling large volumes of data make it a pivotal
component of the Al landscape, propelling the evolution of
intelligent systems and fueling the growth of data-driven
decision-making across industries.

2) Web3: Web3 represents the next phase of the Internet
through the emphasis on decentralization, transparency, and
user empowerment. Unlike its predecessor, Web2, which is
characterized by centralized platforms and gatekeepers, Web3
aims to distribute power and control back to individual users
through blockchain technology and decentralized protocols.
In the Web3 ecosystem, users have greater ownership and
control over their data and digital assets, facilitated by cryp-
tographic principles and smart contracts. This shift towards
decentralization not only reduces reliance on intermediaries
but also fosters trust and security by design, as transactions are
recorded on a transparent and immutable ledger. As a result,
Web3 enables new models of digital interaction, including
decentralized finance (DeFi), non-fungible tokens (NFTs),
and decentralized autonomous organizations (DAOs), which
offer innovative ways for individuals to engage, transact, and
collaborate online.

Moreover, Web3 holds the potential to democratize access
to information and resources, empowering individuals across
the globe to participate in the digital economy on their own
terms. By leveraging decentralized networks and peer-to-
peer interactions, Web3 can circumvent censorship, promote
financial inclusion, and facilitate cross-border transactions
without the need for traditional intermediaries. Additionally,
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Web3 technologies such as decentralized storage and identity
solutions provide avenues for individuals to regain control
over their digital identity and secure their online presence.
As the Web3 ecosystem continues to evolve and mature, it
has the capacity to redefine the Internet as a more open,
inclusive, and equitable space, where individuals have greater
agency and autonomy in shaping their digital experiences and
interactions.

B. The rationale for the combination of Al and Web3

The combination of AI and Web3 technologies holds im-
mense potential to revolutionize various aspects of our digital
landscape. By integrating Al with decentralized protocols
and blockchain systems, we can leverage the strengths of
both domains to create more efficient, secure, and transparent
systems. One significant benefit lies in the realm of DeFi,
where Al algorithms can analyze vast amounts of data from
blockchain networks to optimize trading strategies, detect
fraudulent activities, and provide personalized financial ser-
vices. Additionally, Al-powered smart contracts can automate
complex processes, such as loan approvals or asset man-
agement, without the need for intermediaries, enhancing the
speed and accuracy of transactions while reducing costs and
human errors.

Furthermore, the combination of Al and Web3 technologies
can foster greater privacy and data ownership for users.
Al algorithms can be deployed within decentralized appli-
cations (dApps) to provide personalized experiences while
preserving user anonymity and data sovereignty. For instance,
Al-driven recommendation systems can suggest content or
products based on user preferences without compromising
privacy by processing data directly on the user’s device or
utilizing privacy-enhancing techniques. Moreover, integrating
Al with decentralized identity solutions can enhance identity
verification processes while ensuring user control over their
personal data. This symbiotic relationship between Al and
Web3 not only enhances the efficiency and security of digital
interactions but also empowers individuals to reclaim own-
ership of their digital identities and data in an increasingly
decentralized and interconnected world.

C. Overviewing all challenges

Combining Al with Web3 technologies presents a complex
and multifaceted challenge. Integrating Al algorithms into
decentralized systems requires careful consideration of com-
patibility, interoperability, and scalability. AI models often
rely on vast amounts of data for training and inference,
posing significant challenges in terms of data privacy, storage,
and access within decentralized networks. Moreover, ensuring
the transparency and fairness of Al-driven processes in a
decentralized environment is inherently difficult, as traditional
centralized oversight mechanisms may not be applicable.
Additionally, the dynamic and rapidly evolving nature of both
Al and blockchain technologies introduces complexities in
maintaining compatibility and synchronization between the

two domains. Addressing these challenges requires interdisci-
plinary expertise spanning Al, cryptography, blockchain, and
distributed systems, making the integration of Al and Web3
a formidable endeavor that demands innovative solutions and
collaborative efforts from experts across various fields.

On the one hand, Al offers transformative capabilities in
enhancing efficiency, decision-making, and user experiences.
However, it also brings forth significant challenges related to
privacy, integrity, security, and so on. The inherent opacity
of Al models, coupled with concerns regarding data privacy
and algorithmic bias, raises questions about the ethical impli-
cations and trustworthiness of Al-driven systems. Moreover,
ensuring the integrity and security of AI algorithms and
datasets is paramount to mitigate the risks of adversarial
attacks, data manipulation, and unauthorized access.

Similarly, Web3 introduces its own set of challenges, partic-
ularly concerning privacy and data protection. Decentralized
networks aim to empower users with greater control over
their data and digital identities. However, achieving privacy in
a transparent and auditable blockchain environment presents
inherent tensions. While cryptographic techniques such as
zero-knowledge proofs offer promising solutions, they also
introduce complexities in terms of implementation, scalability,
and usability. Additionally, navigating regulatory frameworks
and compliance requirements in decentralized ecosystems
poses challenges in ensuring legal and regulatory compliance
while preserving user privacy and data sovereignty.

Despite the individual challenges posed by Al and Web3,
the combination of the two further compounds the complexity.
Integrating Al algorithms into decentralized networks requires
addressing the unique challenges of both domains while
ensuring compatibility, security, and usability. The interoper-
ability between Al and Web3 technologies necessitates novel
approaches to data privacy, algorithmic transparency, and
governance mechanisms. As such, achieving a seamless and
effective fusion of Al and Web3 requires a concerted effort
to overcome technical, regulatory, and societal challenges,
making it a highly intricate and demanding undertaking.

D. Ensuring Practicality: A Comprehensive Solution

To effectively address the multifaceted challenges arising
from the integration of Al and Web3 technologies, a practical
solution must encompass a diverse range of essential capabil-
ities. These include:

1) Authentication: Implementing robust authentication
mechanisms to verify user identities and maintain the
integrity of interactions within decentralized networks.

2) Privacy Preservation: Ensuring the protection of sensi-
tive data and preserving user privacy through encryption,
anonymization techniques, and privacy-enhancing tech-
nologies.

3) Security Measures: Incorporating comprehensive secu-
rity protocols to safeguard against data breaches, cyber-
attacks, and unauthorized access, bolstering the overall
resilience of the system.



4) Scalability Solutions: Developing scalable architectures
and protocols to accommodate the growing volume of
data and transactions processed by Al-powered applica-
tions on Web3 platforms.

5) Fairness Assurance: Implementing measures to ensure
the fairness and transparency of AI algorithms and
decision-making processes, mitigating biases and pro-
moting inclusivity.

6) Decentralization: Upholding the principles of decen-
tralization to enhance transparency, resilience, and user
autonomy, reducing reliance on central authorities and
intermediaries.

7) Interoperability: Facilitating seamless interoperability
between different AI models, blockchain networks, and
decentralized applications to enable efficient data ex-
change and collaboration.

8) Governance Mechanisms: Establishing transparent gov-
ernance frameworks to govern the operation and evolu-
tion of the system, enabling community-driven decision-
making and consensus-building.

9) Data Sovereignty: Empowering users with greater con-
trol over their data and digital identities, enabling them
to manage and monetize their personal information in a
secure and transparent manner.

10) Regulatory Compliance: Ensuring compliance with rel-
evant regulations and legal frameworks governing data
protection, privacy, and financial transactions, fostering
trust and legitimacy in the system.

11) Auditability: Establishing mechanisms for auditing and
verifying the integrity of transactions, data, and Al algo-
rithms, enabling thorough examination and verification
processes to ensure accuracy and compliance.

12) Transparency: Promoting openness and visibility in the
operation and decision-making processes of the system,
enhancing accountability and trustworthiness by making
relevant information accessible to stakeholders.

13) Robustness: Building resilient architectures and proto-
cols capable of withstanding various threats and disrup-
tions, ensuring the continuous operation of the system
under adverse conditions.

14) Updatability: Ensuring the system’s capacity to inte-
grate and adapt to emerging technologies, fostering con-
tinuous innovation and resilience against obsolescence.

By incorporating these diverse capabilities into a holistic
framework, a practical solution can effectively address the
complex challenges posed by the convergence of Al and
Web3, laying the groundwork for the development of innova-
tive and trustworthy decentralized applications.

E. Our contribution

Designing a system that effectively addresses all of the
mentioned challenges and provides all of the capabilities
outlined is undoubtedly a formidable task. However, we
recognize the complexity of this endeavor and acknowledge
that achieving the ideal solution may not be feasible from the
outset. Instead, our approach entails starting with a system

that addresses some of the pressing issues and then iteratively
updating and enhancing it with new technologies and func-
tionalities over time. By adopting this iterative approach, we
aim to incrementally improve the system’s capabilities and
resilience, ultimately working towards the overarching goal
of providing a comprehensive solution that fulfills all require-
ments and effectively integrates Al and Web3 technologies.
This adaptive strategy allows us to navigate the complexities
of technological evolution while ensuring that the system
remains agile and responsive to emerging challenges and
opportunities.

Our proposed system, Sertn, aims to leverage blockchain
technology to facilitate the exchange of inferences between
model developers and users in a secure and transparent
manner. Through the Sertn network, model developers can
offer their trained models to users seeking specific predictions
or analyses. Users, in turn, can access these inferences by
paying with tokens which then creates a decentralized mar-
ketplace for AI services. To ensure the integrity and trust-
worthiness of the exchanged inferences, model developers
utilize zero-knowledge proofs (ZKPs) to provide verifiable
evidence that the requested computations were indeed per-
formed correctly without revealing any sensitive information
about the underlying model or data. By integrating ZKPs into
the transaction process, our system enhances transparency
and trust, enabling users to confidently engage with model
developers while preserving the confidentiality of their data
and ensuring the authenticity of the provided inferences.
Through this innovative blockchain-based solution, we aim
to empower both model developers and users to participate in
a secure and efficient marketplace for Al services, fostering a
decentralized ecosystem that promotes fairness, transparency,
and collaboration.

II. TECHNOLOGICAL FOUNDATIONS: EXPLORING KEY
TECHNOLOGIES

To integrate AI and Web3 and provide a comprehensive list
of capabilities, we explore various technologies in this section.
Some of these technologies are utilized in designing Sertn
version 1, while others are not yet practical for implementa-
tion. However, it’s essential to note that Sertn will continually
update to incorporate any advancements in technologies to
evolve into a more practical solution over time.

A. Technologies used in Sertn 1.0

This subsection delves deeper into describing the technolo-
gies utilized in designing Sertn 1.0.

1) Blockchain: Blockchain technology, initially introduced
as the underlying technology for cryptocurrencies like Bit-
coin [1f, has evolved into a revolutionary tool with diverse
applications across various industries. At its core, blockchain
is a decentralized, immutable ledger that records transactions
in a transparent and secure manner. Its distributed nature
eliminates the need for intermediaries, reducing transaction
costs and increasing efficiency. One of the key benefits of
blockchain is its transparency, as all transactions are recorded



on a public ledger accessible to all participants, fostering trust
and accountability.

Additionally, blockchain offers enhanced security through
cryptographic techniques, making it highly resistant to tam-
pering and fraud. Furthermore, blockchain facilitates peer-to-
peer transactions without the need for centralized authorities,
empowering individuals to directly exchange value and assets.
Overall, blockchain technology has the potential to streamline
processes, increase transparency, and democratize access to
services, thereby revolutionizing numerous sectors and driving
innovation.

2) Smart Contract: Smart contracts, a pivotal innovation
enabled by blockchain technology, are self-executing con-
tracts with the terms of the agreement directly written into
code. Operating on decentralized networks like Ethereum,
smart contracts automate and enforce the execution of con-
tractual agreements without the need for intermediaries,
thereby reducing reliance on traditional legal processes and
enhancing efficiency. These programmable contracts can exe-
cute predefined actions automatically when specific conditions
are met, facilitating a wide range the tokenization of assets,
DeFi, supply chain management, and more. By leveraging
cryptographic security and decentralization, smart contracts
ensure trust and immutability, as transactions are recorded
on a tamper-proof blockchain ledger. This transformative
technology has the potential to revolutionize the way agree-
ments are made and executed, offering increased transparency,
speed, and reliability in various industries and sectors.

3) Blockchain interconnection: Blockchain interconnec-
tion, as a critical component for designing Sertn, refers to
the capability of various blockchain networks or platforms
to communicate and interact seamlessly. This interoperability
facilitates the smooth flow of data, assets, or transactions
between disparate blockchain systems, fostering cross-chain
functionality and collaboration. There are multiple approaches
to achieving blockchain interconnection, including cross-
chain communication protocols, atomic swaps, wrapped to-
kens, sidechains, and oracles. Such interconnection is pivotal
for unlocking the complete potential of blockchain technol-
ogy, enabling collaboration, scalability, and interoperability
across diverse blockchain networks and platforms.

4) ZKP: Zero-knowledge proof (ZKP) represents a break-
through cryptographic technique that enables one party to
prove the validity of a statement to another party without
revealing any additional information beyond the validity itself.
This powerful concept allows for the verification of data or
computations while maintaining the privacy and confidential-
ity of sensitive information.

5) ZKML: In the realm of cutting-edge cryptographic
technologies, Zero-Knowledge Machine Learning (ZKML)
emerges as a game-changer by combining the power of zero-
knowledge proofs with machine learning algorithms. Though
ZKML cannot address all challenges in Al and ML, it
provides a necessary layer of security and authenticity not
found in today’s Al and ML solutions.

One significant challenge within the Machine Learning as
a Service (MLaaS) industry pertains to the integrity of infer-
ences, where clients seek assurance that the model developer
has genuinely executed the requested model for their response.
For example, consider a client purchasing a premium account
from OpenAl to utilize ChatGPT 4. They may question
whether OpenAl could opt to use the cheaper ChatGPT 3
instead, thereby saving costs but potentially compromising
the quality of responses to a level that the customer cannot
distinguish. Similarly, when a patient consults an Al doctor
for health predictions, concerns arise about the authenticity of
the executed model. Even if the Al doctor acts with honesty,
the risk of system compromise, where a genuine model may
be replaced with a poisoned one by hackers, poses a serious
threat. In both instances, maintaining the integrity of the
model remains a paramount concern for the customer.

A naive solution would involve the model developer sharing
the model with the customers, who would then run the
model locally to ensure its integrity. However, this approach
is not practical due to the large size of models and the
limited computational resources available to customers. As an
alternative, Ghodsi et al. [2]] proposed, for the first time, the
use of ZKP to design a solution where the model developer, or
a third party like a cloud service, runs the model but generates
a proof using ZKP for the customer to ensure that the genuine
model has been executed.

While Ghodsi’s solution offers benefits, it necessitates the
sharing of the model with customers. However, in certain
scenarios, model developers may be reluctant to share their
models due to concerns about protecting intellectual prop-
erty. Consequently, in addition to ensuring the integrity of
the model, preserving the privacy of the model becomes
another significant concern. Thus, the overarching question
arises: How can model developers assure customers that the
model has been genuinely executed (ensuring the integrity
of inference) without divulging any information about the
model itself (preserving model privacy)? To address this new
complicated problem, Lee et al. [3|] proposed a ZKP-based
solution that aims to address both concerns. Subsequently,
other researchers have proposed a more efficient ZKP-based
solution to address these two concerns [4], [5]], [6].

III. SERTN

Sertn offers a transformative approach for Al opera-
tors seeking to transition their off-chain Al models onto
blockchain networks while safeguarding their proprietary al-
gorithms. This framework streamlines the intricate process
of model conversion, enabling rapid deployment across mul-
tiple blockchain ecosystems. It serves as a seamless bridge
between the off-chain world of Al and the on-chain realm,
ensuring intellectual property remains veiled through the use
of zero-knowledge cryptography. By providing a secure and
efficient payment infrastructure, Sertn facilitates atomic value
exchange for Al services, paving the way for a new era
of autonomous Al agents interacting within the blockchain
space.



For consumers of Al predictions, Sertn offers an additional
layer of assurance by eliminating trust assumptions. They
confidently rely on the network to validate that the inputs
are processed using the correct and intended Al model, with
a cryptographic guarantee of faithful execution. As a result,
consumers of Al services benefit from a transparent, trust-
minimized environment where Al predictions are verified,
reducing the need for blind trust in the operators’ execution.

A. Technical Architecture

To address current blockchain limitations and challenges of
running on-chain Neural Networks, Sertn is designed to serve
as a conduit between off-chain and on-chain architectures.
Taking a forward-looking approach, the Sertn architecture is
inherently modular, a design philosophy for each component
of the system to be individually updated or replaced.
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This adaptability is a core characteristic, anticipating the
need to integrate advanced Al models and alternative solutions
as they emerge in the dynamic Al and blockchain landscape.

B. Off-Chain Architecture

Node Pools: The off-chain infrastructure and computational
power of Sertn is based around node pools.
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Fig. 2. Epoch transition with new Node registration
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These pools consist of registered nodes that are assigned to
process specific models’ inference workloads. After registra-
tion, a model node becomes part of the available workforce.
A node may service multiple models, and it is incumbent
upon the node operator to ensure the successful completion

of assigned tasks. Nodes pledge a certain amount of computa-
tional power and time to the network. With the computational
requirements of workloads being predetermined, the network
allocates tasks accordingly and does not exceed a node’s
capacity. A node is expected to fulfill its commitments within
the epoch it is registered. Any failure to perform, or indication
of unavailability, may result in penalties to the node.

C. Persistent Storage

Due to the considerable size of input and outputs from
Al models, external persistent storage is required. Depending
on the ultimate end use case of the output, storage within
Sertn may not be required. An example is an NFT image
generated with a diffusion model. The hash of the image can
be verified and stored on-chain with the image being stored
on Arweave [7] or other decentralized storage networks.

D. Aggregation Circuits and Staked Deferred Proofs

As the complexity of a model increases, so does the size
of its associated zk-circuit which results in larger proofs.
To manage this, aggregation circuits are utilized to amalga-
mate multiple proofs into a singular concise proof submitted
on-chain, along with the corresponding output data. This
technique also permits the batching of related inferences,
enhancing efficiency and reducing the on-chain data storage
footprint.

One issue that can arise with aggregation is response time.
Users querying a model likely do not want to wait for the
worker to aggregate many proofs in order to obtain the result
of their query.

The Staked Deferred Proof (SDP) protocol involves the
worker staking token as a commitment to providing a valid
proof at a later time. Upon receiving a query, the worker will
produce an output, as well as storing (but not sending) the
associated proof. Instead of sending the proof, the worker will
stake some token, promising to provide a valid proof. When
enough queries have been made, the worker will provide an
aggregated proof to the chain. Once this aggregation has been
verified, the worker will retrieve their staked token. If however
the proof is incorrect, the staked token will be released to
the users as compensation for the incorrect response to their
query.

This solution can reduce wait times for users, while still
solving the efficiency problems caused by larger proofs.

E. On-chain Architecture

The on-chain component of the Sertn system acts as the
interface for end users and dApps. Users or dApps submit
workloads, which include all necessary details like input,
precommitment, and destination. This on-chain architecture
consists of three main components: The Inference Market,
Model Registry, and Verifier Contracts.

E. Inference Market

The ecosystem is anchored by an Inference Market. The
protocol has a native queue of AI/ML workloads. A work-
load can be thought of as an end-to-end AI/ML Inference.



Each workload specifies all required details to complete it,
such as input data, specific AI model for execution, output
data requirements or on-chain execution. Workloads posted
to the network are priced according to their computational
complexity.

G. Model Registry

After circuitizing a model with the Sertn SDK, its creator
will register it on the network. This defines the required input
and output data format, computational cost of inferences on
the model (proportional to cost of compute for an inference)
and the verification key for use in a verification contract upon
completion of each inference from the model.

H. Model Node Pool Registration

In order to complete inference workloads for a model, a
model node must register its intent to complete workloads
for specific models. Once registered the node is added to the
pool of available nodes. Nodes may be registered to service
multiple models, but it is the responsibility of the operator to
ensure the node completes assigned workloads.
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Fig. 3. Model Registration

The network implements sets of blocks, called epochs, in
which a registered node must be available. Nodes that register
in the current epoch are activated during the following epoch.
Model nodes commit compute units per unit of time to the
network. Since the compute units for a workload are known
ahead of time the network delegates workloads to fill but not
exceed its compute capacity.

It is the expectation that a model node will complete
delegated workloads during a registered epoch. Model nodes
which fail to complete work while registered or otherwise
shown to be unavailable will face a penalty.

1. Model Vetting

As Sertn will be an open permission-less network, no party
(or even Inference Labs) can decide which models should or
shouldn’t be available on the network. Instead an economic
system determines how “good” a model is. This is crucial to
retain an open and fair censorship free network.

Verified backtesting is published by the model creator and
made available to the public. Users get a guarantee the model
will perform a certain way under set circumstances rather
than relying on blind trust in published accuracy, precision
and recall values. While the provided examples may not be
representative of real-world use cases as it is self-published
by the creator, this is clearly a move in the right direction.
Users also submit inferences one at a time, with no upfront

commitments or complicated setup to quickly verify the
usefulness of the model for their application.

Aggregating on-chain historical usage of a model results
in a proof of its usefulness. How “good” a model is can be
answered by its frequency of use, inference by a diverse set
of applications and users, and repeat use of a model by a
user. In the same way an open-source software package can
be evaluated by the number of other projects which depend
on it (and subsequently how “good” those packages are).

The network implements a non-zero registration fee for
models to prevent flooding of the network with unusable or
non-existent models.

IV. CURRENT EXECUTION AND DEPLOYMENT

This section provides an overview of the implementations
undertaken by the team. Our team has assessed some projects
(consisting EZKL, RISCO, ORION and KANG) focused on
providing Al solutions to compare and evaluate their perfor-
mance, as outlined in [8] along with detailed information.
The following table compares various ZKML projects based
on different properties.

In addition to assessing various properties, our team has
evaluated the performance of the underlying ZKP systems
within the projects, as depicted in the following figure.

Three different projects are compared for four Al problems
(linear regression, random forest, svm classification, and
regression).

The evaluation of properties and performance across var-
ious ZKML projects has revealed that EZKL emerges as
the most feature-complete and efficient framework for this
purpose, which explains its widespread adoption within the
community. As contributors to the EZKL project, Inference
Lab strives to integrate EZKL with blockchain to explore
new ideas. Meanwhile, our team also works on other ZKML
projects to enhance accessibility and further refine the final
product.

ZKML uses Halo2 to generate proving and verification
keys. It aims to facilitate the recursive composition of zk-
SNARKS, allowing for more scalable and efficient proofs [9].
Halo2 represents the next generation of zk-SNARK technol-
ogy after the original Halo protocol.

EZKL is a library and command-line tool for doing infer-
ence for deep learning models and other computational graphs
in a zk-snark (ZKML). EZKL works as follows [10]:

1) Firstly a neural network is defined in form of a compu-
tational graph using PyTorch or TensorFlow.

2) Using training data, the defined model will be trained
and the final model will export as an .onnx file.

3) Point ezkl to the .onnx and input of the model (as a
Jjson file) to generate a ZK-SNARK circuit which will
work as the following figure. From here a nearly 1:1
representation of the model is outlaid in a circuit.

V. REMAINING CHALLENGES AND FUTURE WORK

This section first discusses remaining concerns such as IP
risk and data privacy, then it explores future enhancements



for Sertn. We anticipate Sertn’s potential to support emerging
technologies like FHEML, verifiable FHE, MPCML, and
others. While these technologies currently pose computational
challenges and are not yet practical, advancements in tech-
nology suggest that efficient solutions will become available
over time. Consequently, Sertn remains adaptable for updates
to accommodate new technologies and services.

A. Security evaluation

The following provides an overview of the cybersecurity
concerns present in the current version of Sertn. However,
these concerns are not significant enough to render Sertn
useless. The aim is to offer a comprehensive understanding of
the advantages and disadvantages of Sertn, providing potential
customers with a clearer understanding.

1) Reverse Engineering Risk: One of the most valuable
aspects of Sertn is the aggregation of inferences. Having a
clear picture of how often and by whom models are being
utilized is a whole industry on its own; however this may
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create a new form of IP risk yet to be seen at scale. With a
sufficient set of inputs to outputs from a particular model,



a sophisticated 3rd party could train a similar or compet-
ing model using published data. Similar approaches have
been seen by crowdsourcing prompt-to-response datasets from
ChatGPT and then fine tuning GPTv2 to achieve surprisingly
good results.

* TP Replication Risk

While not a perfect analogy, one must not assume the
process of zk-circuit generation to proving and verification
keys is strictly one way as it would be with any secure
hash function. There may be artifacts in the keys which
give hints about the original circuit design and therefore the
underlying model used to generate the circuits [[11]. While it
is likely computationally impractical to reverse this process
and regenerate the original model from the keys, the risk still
theoretically exists.

* Public Verification Key

2) Security Risk: During the initial circuit generation
phase, certain proving systems (namely zk-SNARK) require
a set of keys to be generated and securely destroyed. Each
model deployed may require a trusted setup which creates a
potential attack vector [12].

* Trusted Setup Risk

There are a few methods to mitigate this which are in early
development. Recently ahead of the Unirep v2 launch, a call
to the public was made to assist in a public trusted setup
generation process (which Inference Labs proudly participated
in) and the tools are open source to repeat this process. This
process can be replicated at scale and at the protocol level.
When new models are registered, nodes contribute to the
process and are incentivized for their participation. This also
further increases the security of the setup process and the
overall network.

* Age of ZK

Drawing inspiration from Kalai and Rothblum’s “From
obfuscation to the security of Fiat-Shamir for proofs”, the
maturity and widespread adoption of a technology often serve
as robust indicators of its security and reliability. Historically,
technologies that withstand the test of time and are adopted
at scale have undergone extensive scrutiny by the community,
leading to the identification and rectification of potential vul-
nerabilities. This iterative process of challenge and refinement
underscores the significance of a technology’s age as a proxy
for its security robustness.

zk-SNARKS and zk-STARKS are exemplary cases in point.
These cryptographic protocols, though relatively nascent, have
rapidly gained traction in the domain of privacy-preserving
transactions and verifiable computations. Their growing adop-
tion, especially in decentralized and privacy-focused appli-
cations, signifies the community’s increasing confidence in
their security properties. The research by Kalai and Rothblum,
among others, has shed light on the foundational principles
and potential vulnerabilities of such zero-knowledge proof
systems, contributing to their ongoing evolution and solidi-
fying their position in the cryptographic landscape [[13].

3) Data Privacy: When a user sends a query to a server
and expects the inference of an Al model, they inevitably

expose their data to the server. While the user may trust
the model’s integrity, as the server can generate proof that
the requested model was indeed used, their data’s privacy
remains compromised. Additionally, the server gains access
to the output of the Al model, which may concern the user.
For example, imagine a patient sending their CT scan to an
Al doctor for a diagnosis; the patient may be uncomfortable
with the server having access to their scan and knowing
the resulting diagnosis and potential illnesses. This privacy
concern is prevalent in all current ZKML solutions, including
our product, Sertn.

B. Potential Technologies for future versions

This subsection offers an overview of potential technologies
that could be integrated into future versions of Sertn. While
these technologies may not be currently practical due to
factors such as expensive computation or scalability issues,
advancements are occurring rapidly. We are actively seeking
updated technologies to enhance Sertn and improve its per-
formance.

1) More improvement in ZKML: Current solutions in
ZKML face various limitations, such as lengthy proof genera-
tion times, non-succinct proofs, and susceptibility to quantum
attacks. While each scheme endeavors to mitigate some of
these challenges, none have fully addressed all of the concerns
comprehensively. However, numerous teams, groups, and star-
tups are actively investing in addressing these issues. Despite
these limitations, the current solutions remain practical and
effective for addressing specific problems. We can continue
to update the Sertn system to incorporate advancements in
this field as they emerge.

2) FHE and verifiable FHE: Fully Homomorphic En-
cryption (FHE) stands as a groundbreaking cryptographic
technique that allows computations to be performed directly
on encrypted data without the need for decryption at first.
This transformative capability addresses the critical challenge
of preserving data privacy while still enabling data processing
and analysis. Applications of FHE are vast and impactful in
privacy-enhancing technologies, however, in machine learn-
ing, FHE enables secure computation on encrypted data, al-
lowing companies to collaborate on sensitive datasets without
revealing the underlying information, or allows a developer
to run a model on encrypted data from the customers.

The concept of homomorphic encryption dates back to
the 1970s, with the foundational work of Rivest, Adleman,
and Dertouzos on partially homomorphic encryption. Over
the years, researchers including Craig Gentry made sig-
nificant breakthroughs in the development of fully homo-
morphic encryption, culminating in Gentry’s groundbreaking
work in 2009 [14]. Since then, there has been ongoing
research to improve the efficiency and practicality of FHE
systems [[15]], [16], [[17], [18]]. Despite much improvement and
research in FHE, computational complexity and overhead of
the current FHE solutions prevent wide industry adoption of
the scheme. However, science is improving daily and ongo-
ing advancements in FHE algorithms and implementations



hold the promise of making practical deployments of this
technology increasingly feasible, unlocking new possibilities
for secure and privacy-preserving data processing in different
industries such as Al

In addition to concerns regarding complexity and perfor-
mance, there are other considerations in FHE-based systems,
particularly when applied to MLaaS. Similar to the integrity
inference concern previously discussed; what if the model
developer does not execute the genuine model? This raises
the concept of Verifiable Fully Homomorphic Encryption
(VFHE). VFHE expands on the capabilities of FHE by
allowing parties to verify the accuracy of computations per-
formed on encrypted data without decryption [19], [20]. This
introduces an extra layer of trust and assurance in applications
where the integrity and accuracy of computations are crucial.
By merging the privacy-preserving attributes of FHE with the
privacy-preserving and verifiability of cryptographic proofs
(like ZKP), VFHE presents a potent tool for enhancing
data security, integrity, and trust across a wide array of
applications, spanning from secure outsourcing and MLaaS
to decentralized finance and beyond.

However, this intriguing idea is not yet practical. While re-
searchers strive to enhance both FHE and VFHE schemes, the
computational requirements for the current solutions remain
prohibitively high, rendering these schemes impractical [21].
Nevertheless, our team consistently monitors advancements in
new schemes to identify any potential improvements in this
field and update Sertn accordingly. This underscores the im-
portance of ensuring that our design possesses the capability
for updatability, allowing it to be seamlessly updated with any
new advancements.

In the future, we anticipate the introduction of practical
and efficient VFHE solutions. Subsequently, it will become
feasible to design a system wherein a user encrypts their own
data and sends it to the server. The server will then execute
the Al model to generate proof, with the entire process being
verified using VFHE. This approach ensures that neither the
input nor the output of the Al model is readable by the server,
while also proving the integrity of the model. Finally, the
verified and encrypted output will be sent back to the user,
who can decrypt it and verify the proof. Such a theoretical
solution would effectively address the privacy concerns that
currently plague Al solutions.

3) MPC: Multi-party computation (MPC), also referred to
as secure multi-party computation (SMPC), was pioneered
by Andrew Yao in 1982 [22]]. This revolutionary concept,
illustrated by Yao’s Millionaires’ Problem, enables two mil-
lionaires to ascertain which holds a greater value without
divulging their actual wealth to each other. In a broader sense,
MPC facilitates multiple parties to collectively compute a
function over their individual private inputs without revealing
any information about those inputs to one another. Verifiable
Multi-Party Computation (VMPC) extends the capabilities of
MPC by introducing mechanisms to verify the correctness
and integrity of computed results without compromising the
privacy of the inputs [23]], [24].

The combination of MPC and ML offers various appli-
cations, one of which involves multiple financial institutions
utilizing MPC techniques to collectively assess loan appli-
cants’ creditworthiness without compromising sensitive cus-
tomer data. Each institution securely shares their trained ML
model parameters, which are then aggregated through MPC
to generate joint predictions on new loan applicants’ data.
This collaborative approach enables institutions to collectively
make decisions regarding loan approvals or denials while
upholding the privacy and security of customer data. Lever-
aging MPC allows for effective collaboration on inference
tasks while ensuring data confidentiality and compliance with
privacy regulations. Additionally, exploring the integration of
ML and VMPC presents another promising avenue for future
revisions of Sertn.

4) Integrated solutions: We anticipate the development of
a sophisticated cryptographic system in the coming years, of-
fering various capabilities. For instance, patients may encrypt
their health data and transmit it to an Al doctor. Subsequently,
the Al doctor will execute an Al model for inference and
generate a proof, assuring the patient of the genuine execution
of the model. Neither the patient nor the model developer will
be required to divulge personal data or model information to
each other. Such a system promises data and model privacy,
coupled with model integrity. However, the design of such
a system is intricate, and no solution currently exists. We
foresee its development in the near future, prompting our team
to prioritize the updatability capability for the Sertn system.

C. Potential Usages of Sertn

Inference Labs Inc. is actively pursuing Privacy Enhance-
ment Technologies (PETs) and investigating potential applica-
tions of Sertn. One evident application of Sertn, as discussed
in the paper, is when a designer seeks assurance that a prompt
was executed by the designated server. Moreover, Sertn holds
promise in addressing numerous challenges related to respon-
sible Al beyond this specific scenario.

The significance of responsible Al has come to the forefront
in recent years, especially following the startling revelations
about ChatGPT, Sora, and other Al models. These incidents
have prompted widespread discussions among people and
governments, raising concerns about the future implications
of AL With the increasing reliance on AI for decision-
making and various tasks, there is growing apprehension
about the potential misuse of Al by companies and govern-
ments. Ensuring the correctness and reliability of Al systems
becomes crucial in this context. While one simplistic solution
may involve making all Al models publicly accessible for
scrutiny, this approach could deter companies from investing
in products that would be disclosed. Many prefer to safe-
guard the details of their models as intellectual property.
Responsible Al emerges as a promising solution to address
these concerns comprehensively. It encompasses principles
and practices aimed at fostering ethical and accountable
development, deployment, and use of Al systems, thereby



promoting transparency, fairness, and trustworthiness in Al
technologies.

Responsible Al involves robust governance frameworks,
clear guidelines for ethical decision-making, ongoing moni-
toring and evaluation, and meaningful engagement with stake-
holders throughout the Al lifecycle. By prioritizing responsi-
ble Al practices, organizations and developers can build trust
with users, mitigate risks, and maximize the societal benefits
of Al technologies.

ZKML and other privacy-preserving machine learning
(PPML) technologies hold the potential to fulfill various
objectives of responsible Al. For example, social networks
such as Twitter, YouTube, Instagram, and others utilize Al
models to curate content for their users. However, they have
faced accusations that these AI models do not exhibit fair
behavior across different user groups. For instance, there have
been discussions regarding YouTube’s algorithm potentially
discriminating against minority creators [25]. Additionally,
Facebook’s algorithms have been criticized for promoting
hate speech and toxic content [26]]. Twitter has even ac-
knowledged bias in its algorithm, particularly regarding right-
wing politicians and news outlets, which can impact national
policies [27].

To address this issue, companies should demonstrate the
fairness of their AI models. A naive solution would be
for these companies to publicly disclose their algorithms.
However, this approach conflicts with their intellectual prop-
erty rights. Therefore, ZKML proposes a solution whereby
companies can prove that they are using a specific algo-
rithm for all users without revealing any information about
their models. Kang et al. [28]]. have provided insights into
the ZKML system, which operates using GPU acceleration
(GPA). The use of GPA can accelerate the proof generation
process by over 1000 times. Consequently, they suggest that
Twitter could generate proofs for 1% of the 500 million tweets
per day from its users for approximately $21,000 per day.
Given that this cost represents less than 0.5% of Twitter’s
annual infrastructure expenses, it is feasible for Twitter to
demonstrate the fairness of its feed Al models.

In the future, as Al models increasingly handle decision-
making and various tasks, responsible Al will become even
more critical than it is today. Simultaneously, with a shift
towards decentralization, most communications and transac-
tions are expected to occur on Web3. In such an environment,
Sertn will play a vital role by enabling AI model operators to
broadcast proofs of honesty on Web3 without compromising
the confidentiality of their model details.

VI. CONCLUSION

Sertn presents a comprehensive solution to the challenges
of integrating Al and blockchain technology. It provides a
decentralized protocol that enables secure, off-chain AI model
inferences while preserving intellectual property through zero-
knowledge cryptography. This innovative approach not only
enhances privacy and security but also ensures the integrity
and authenticity of AI models. The Sertn architecture is
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designed to be modular and adaptable, supporting rapid
deployment across multiple blockchain ecosystems. This work
reflects a significant step towards realizing a decentralized,
secure, and privacy-preserving foundation for Al-enhanced
blockchain systems, potentially revolutionizing the way Al
operates in the blockchain space and contributing to the
broader adoption of web3 technologies.

As we progress we will maintain a strong focus on uphold-
ing these fundamental principles:

* Decentralization and Democratization of Al

Sertn aims to enable the decentralization and democrati-
zation of Al, aligning with core Web3 values. By facilitat-
ing privacy-preserving and verifiable Al services on public
blockchains, Sertn makes advanced Al accessible beyond
large tech firms with proprietary data silos. This expands
opportunities for innovation, collaboration, and value creation
with Al systems operated transparently on open networks.

* Developer experience-centric modular system design

With a focus on simplicity and modular architecture, Sertn
streamlines the integration of cryptographically verified Al
into decentralized applications. The system design centers
on enhancing the developer experience through abstrac-
tion of complex zero-knowledge cryptography and seamless
blockchain interoperability (zk-ML). Cost-reduction and flex-
ibility are built into the core framework to accommodate rapid
evolution in the AI and blockchain landscape.

* Open-source protocol for secure and composable
systems

As an open-source protocol, Sertn fosters transparency, col-
lective ownership, and community-driven development. Fol-
lowing the ethos of permissionless innovation, Sertn creates
infrastructure for Al-enhanced dApps to compose securely
with minimal trust. By combining verified Al and blockchain
building blocks within an open ecosystem, Sertn aspires to
be a public good facilitating the creation of services with
embedded privacy, security and autonomy.

In summary, Sertn implements the responsible and ethical
application of Al within Web3 by making artificial intel-
ligence both decentralized while protecting value creation.
Through it’s innovative technical architecture and commit-
ment to openness, Sertn seeks to lay the foundations for the
next generation of Al-powered decentralized applications.
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